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Abstract. The interaction of quasi-one-dimensional elect" and longitudinal-optical (LO) 
phonons is calculated. Results are presented for the polaron correction to the electric subbands 
and the polaron effective mass. Using improved Wigner-Brillouin perturbation theory, we have 
investigated in detail the energy-momentum relation for quasi-om-dimensional polarons. It 
is shown that the dispersion c w e s  of all subbands bend over and are pinned at the phonon 
continuum above the renormalized ground state. "his should m u l t  in a spatial OScillation of the 
eleclron group velocity in rral quantum-well wires. 

1. Introduction 

Advances in epitaxial layer growth and nanometre techniques have made it possible to realize 
quasi-one-dimensional (QlD) quantum-well wires (Qwws) of different polar semiconductor 
materials. In polar semiconductors the electronic energy levels are modified by polaronic 
effects in the following manner [l, 21: a quasi-particle, called a polaron, consisting of an 
electron and its surrounding phonon cloud, is formed. For a < 1, with a the dimensionless 
3D polaron coupling constant, this leads to (i) a shift in the energy: A E  = -ahoL 
with RWL the energy of the longitudinal-optical (LO) phonon; (ii) a mass renormalization: 
m:/m. = (1 - ;a)-' where me is the effective conduction band-edge mass and m: the 
polaron mass; (iii) a polaron-induced non-parabolicity: & ( u / f i u ~ ) ( h ~ k ~ / 2 m , ) ~  for small 
3D wave vectors k = (kx ,  ky, kz ) ;  and (iv) the energy-momentum relation bends over if the 
polaron kinetic energy approaches the Lo phonon energy above the correct ground state. 

The quantum confinement of the electrons in a QWW changes these properties 
considerably. In 3D bulk polar semiconductors the electrons only interact with the LO 
phonons [3], but in layered systems of polar semiconductors the electrons interact with 
modifred LO and inte$acephonons 14. 51. Both types of phonon are also present in QWs 
[6-13]. The principal difficulty in calculating the optical phonons in QWWS is that the 
equation of motion and the boundary conditions for the phonons do not separate in general 
in these geometries. This is only the case for cylindrical QWWs [7]. In the case of Qwws 
with rectangular cross sections mostly ad hoc approximations have been used. However, 
it was shown in [14] that such approximations lead to significant errors in the scattering 
rate. It was further shown in [14] that for an electron confined in a Qww with width larger 
than 100 nm the total scattering rate of the modified Lo and interface phonons is nearly 
the same as that for 3D bulk LO phonons. Hence, the approximation of using 3D bulk Lo 
phonons instead of the correct phonon spectrum provides good results for typical Qwws 
if the effects of the electron-pbonon interaction occur as the sum over all phonon states. 
Further, in most Qwws the lateral confinement of the electrons is realized by an electrostatic 
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potential created by a grating-type gate on top of the sample (field-effect device) and not 
by a structural confinement (deep-mesa etched and directly grown Qwws). In these field- 
effect nanostmctures prepared on heterojunctions there is no influence of interfaces in the 
lateral direction on the spectrum of the optical phonons. Hence, Q1D polarons [15-171 and 
magnetopolarons [18, 191 are investigated, using the model of 3D bulk Lo phonons. 

In this paper we direct our attention to the energy-momentum relation for polarons, 
quantum confined in Qwws. The theory of the dispersion relation of 3D polarons has 
been given by Whiffield and Puff 1201 and by Larsen [21]. Degani [22] calculated the 
dispersion relation of QlD polarons in rectangular Q W s  using an improved Wigner- 
Brillouin perturbation theory. Unfortunately the modification done in [22] to the standard 
form of the improved Wigner-Brillouin perturbation theory of Lindemann et a1 [23] to 
include the subband structure of Q W s  leads to an incorrect energy-momentum relation for 
all excited subbands. In this paper we investigate the electron-phonon correction within 
second-order perturbation theory, to overcome the problems of [22]. Using the effective- 
mass approximation, the unperturbed system, a single electron in the presence of a confining 
potential acting in the y-z plane, is described by the Hamiltonian 

(1) 

where we assume a parabolic confining potential in the y direction, V(x) = im,S2'y2 + 
V(z), and that the electron is confined in a zero-thickness x-y plane along the z direction 
at z = 0. The eigenvalues are 
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H~ = p2/2m, + ~(x) 

(2) 
hzk: 

&(kx) = h n ( N  + $) + - N = 0,1,2, ... 
2me 

1 
and the corresponding single-particle wavefunction is given by 

(3) (4N. kx) = * N ~ ~ ( z )  = - ~ V ( ~ ~ ~ X ) @ N ( Y ) C O ( Z )  G 
with L, the length of the Q w w  in the x direction (Born-von K&" periodic boundary 
conditions), where Q N ( Y )  is a harmonic oscillator wavefunction and [rp(z)lz = 6(z). 

2. Electron-phonon interaction 

The energy levels of an electron are shifted by the interaction of the electron with long- 
wavelength optical phonons. For simplicity we will assume that the electrons inside the 
Q W  only interact with 3D bulk LO phonons. 

The Hamiltonian of the polaron is Hp = He+Hph+ Hep. The first two terms represent the 
unperturbed electron and the Lo phonon system and Hep is the standard Frohlich Hamiltonian 
of the electron-phonon interaction [3]: 

and 
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the dimensionless 3D polaron coupling constant and rp = ( f i / 2mew~) ' f2  the corresponding 3D 
polaron radius. E- and are the high-frequency (optical) and the static dielectric constant 
of the semiconductor containing the electron, respectively, and €0 is the permittivity of 
'vacuum. Further, aL(q) and aL(-q) are the phonon destruction and creation operators and 
q is the 3D wave vector of the LO phonons. 

In the weak-coupling limit (or << l),  valid for typical semiconductor materials forming 
Qwws, second-order perturbation theory can be used. Then the energy shift h E ~ ( k , )  of 
the subband energy EN@,) = EN&,) + AEN(kx) is given by 

where MNJN(q) = (N',  k, - q x ;  lqlHeplN, kx;  Oq) is the corresponding matrix element. The 
ket IN, k,; nq)  = IN, k,)  @ Inq) describes an eigenstate of HO = He + Hph composed of 
an electron in subband N with momentum fik, and n, Lo phonons with momentum Aq and 
energy h q .  The corresponding level we call the n-phonon unperturbed level, as opposed to 
the renormalized level, the n-phonon polaron level. The energy denominator in equation (6) 
is given by 

(7) 

where the value of AN(&) depends on the type of perturbation theory used [23]: (i) 
AN(kx) = 0 leads to Rayleigh-Schrodinger perturbation theory (RSPT), (ii)  AN(^^) = 
AEN(kz) results in the Wgner-Brillouin perturbation fheory (WBPT) and (iii) A N & )  = 
AE"(kx) - AE,Rsw(O) gives a modified improved Wigner-Brillouin perturbation theory 
( ~ B P T ,  for details see below), with A E p m ( 0 )  the electron-phonon correction to the 
electron ground-state energy calculated within RSPT. Introducing in equation (6) 3D polaron 
units (energies are measured in units of AwL and lengths are in units of rp )  and converting 
the sum over the phonon momentum into an integral, one gets 

hZq: h2 
2m m DN,,v(kx, 41) = f i 0 ~  +fiQ(N' - N )  + - - -k,& - A N & )  

(8) 

with a = q i  sin q / q  and N I  = max(N, N') and NZ = min(N, NI), 411 = lqlll = 
(4: +$)'/*, q = Q/WL and where we have introduced cylindrical coordinates in the qx-qr 
plane; L$(c) is the associated Laguene polynomial. This expression can be expanded in 

effective mass m; for the polaron motion in the x direction near the bottom of the subband 
EN&) is 

[ L N I - N I  Ni W I Z  
X 

l + v ( N ' - N N ) + q ;  C O S ~ Y , - Z ~ ~ ~ ~ ~  C O S Y , - A N ( ~ ~ )  

2 

powers of k,": AEN(k,) = AEN(O) + AEL(0)k: + $AE;(O)k: f . . . and SO the polaron 

Note that WBPT and IWBPT make equation (8) self-consistent with the result that higher 
powers of (Y in A  EN(^,) and m> occur. Considering for the moment the energy-momentum 
relation for the n-phonon unperturbed states, it is obvious that below the one-phonon energy 
&(O) + h a  there is only a finite number of subbands, i.e. from zero-phonon states. Above 
G(0) + AOL there is a continuum of states, called the phonon continuum, for each value 
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of the polaron momentum. The electron-phonon interaction couples the degenerate states, 
leading to a splitting of a zero-phonon state into an upper and a lower branch. The upper 
branch is above the boundary of the phonon continuum, but the lower branch is below this 
h e .  Hence, all states IN, k,; 0,) lying below the energy &(O) +fim must bend over if 
their energies approach the near vicinity of the boundary of the phonon continuum because 
of the anticrossing repulsion. For larger momenta these states are then pinned at this line. 
In this picture the bend-over starts at kiN) = JZm./fi(w, - NS2) for subband N. Because 
the electron-phonon interaction renormalizes the energies to EN(k,) = &(k,) + AEN(k,), 
the accurate dispersion curves of all subbands must bend over at Eo(0) + AuL, i.e. the 
onephonon energy f i w ~  above the shifed ground state Eo(0) = Eo(0) + AEo(0) of the 
system. For further consideration only the lower branches below the phonon continuum are 
of interest. 

The RSFT describes the energy correction AEN(kx) quite well if k, << k!”, but it 
fails near k:”. The energy shift AEN(kx) calculated using non-degenerate RSPT diverges 
negatively (near but below) at k$N) for any strength of the coupling because the energy 
denominator in equation (8) vanishes at k$N). Hence, degenerate perturbation theory has 
to be used. One possibility is to use WBPT. But unfortunately WBPT gives a bend-over at 
& ( O ) + f i o ~ ,  the one-phonon energy above the unperturbed ground state €0(0), which would 
lead to the wrong result that the polarons in the bend-over region could decay into a phonon 
and an electron. In order to get the dispersion relation EN(k,) of each subband with the 
correct bending-over and pinning behaviour WEPT must be used. Modifying the WEFT 
of Lindemann et al [23] to the case of polarons in QWws we start from the unperturbed 
energy EN(k,)  + AEzspT(0) and take this level as the reference level for the excited states 
by decomposing H, as Hp = (Ho + AEFpr(0))  + (Hep - AEts”(0)).  This results in 
equation (7) with AN(kx) = AE,v(k,) - AEtspr(0).  It is seen later that this modification 
of the IWBPT gives the correct bending-over and pinning for all subbands. In contrast to our 
modification, Degani [D] uses AN(k,) = AEN(k,) - A E y y B p T ( 0 )  with the wrong result 
that the higher levels bend over at G , ( 0 ) + A E p p T ( O ) + f i ~ L ,  which is different for different 
subbands. 

We note that for unperturbed states with OL < NQ the corresponding bottoms of the 
electric subbands are inside the phonon continuum. Here, we only consider the QID polaron 
dispersion relation below the phonon continuum. To analyse the QID polaron energy- 
momentum relation in detail we calculate the energy corrections AEo(k,) and AEl(kx)  of 
the two lowest subbands. For the calculation of the energy shifts we convert the denominator 
in equation (8) by the integral 

= l m d t  e X P [ - D N , N ( k x ,  qx)tl  

which is possible under the condition DN,N(k,, qx)  z 0, restricting the calculation to 
energies below the phonon continuum and obtain for the two lowest subbands 

L Wendier and R Kiigler 

(10) 
1 

DN‘N(kx9 q x )  

dt exp(-(1 - AN(k,))t) (11) 

) [(I - A(t)~in~(o)t]-”~A,N(t) 
tk: cos2 9 ( 1 - A(t) sin2 ‘p 

izp d’p 

with A(t) = (e-qf - 1 + qt)/qt, = 1 and 

(cosh qf - 1) sin2 (p 

(1 - ~ ( t )  sin2q) qt 
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Performing in equation (1 1) the integral over the angle, we obtain for the renormalization 
of the first two states 

with = K [ A ( t ) ]  and 

The corresponding derivatives are given by 

with @(E) = D [ A ( t ) ] ,  

AL(0) = 0 in RSFT and A’,@) = AEN(O) in WBFT and IWBFT. K(e) is the complete 
elliptical integral of the first kind, EO) the complete elliptical integral of the second kind 
and D(t )  that of the third kind. A’@) = ,/- is the complementary modulus of the 
elliptical integrals. 

3. Discussion 

For numerical calculation we have used a GaAs-Gal,AI,As QWW (GaAs: M = 0.07, 
rp = 3.987 nm, f i q ,  = 36.17 meV, me = 0.06624m0, mo: bare electron mass) where the 
electrons are confined within GaAs. 
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-5.1 Figure 1. Polaronic energy renormaliza- 
tion of the fint two electric subbands for 
a GaAs-Gal,ALAs QWW as a function E!!::: of the confinement energy. 
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The calculated zero-momentum energy renormalizations of the two lowest subbands are 
plotted in figure 1. It is seen that with increasing confinement the polaronic renormalization 
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Bn (mev) 
0 4 8 12 

. 
xz 
E 

1.02 

I 
~~ 1.00 ‘ o,o o,l o,2 o,3 o,4 Figure 2. Polaron effective mass of the two lowest 

electric subbands for a CaA-Gar,AI,As QW as 
a function of the confinement energy. 

increases more for AEl(0) than for AEo(0). For vanishing geometrical confinement 
frequency Cz we obtain from equation (12) in the lowest order of a the well known result 
for 3D polarons AEo(0) = AEI(O) = -$fa. The polaron masses are plotted in figure 2. 
It is seen that the polaron mass of the lowest subband m; depends on the confinement 
much more weakly than the polaron mass m; of the first excited subband. For vanishing 
confinement potential we obtain from equation (13) m;lm, = m;/m, = (1 - ar/8)-’. In 
figure 3 the polaron dispersion curves of the lowest subband are plotted, E,&), calculated 
with RSPT, WBPT and IWBPT. It is seen that for a polaron wave vector k, << kjo) the 
three perturbation theories give nearly the same result. In RSPT the energy Eo(k,) diverges 
negatively at kip) and fails to describe the correct polaron energy-momentum relation for all 
momenta. Further, W B ~  results in the wrong bend-over behaviour at the boundary of the 
unrenormalized phonon continuum. The IWBPT shows the correct bend-over and pinning 
behaviour at the boundary of the renormalized phonon continuum. As in the 3D and 2D cases 
the dispersion relation is essentially parabolic for small momentum but becomes strongly 
non-parabolic in the near vicinity of k!”. 

In figure 4 the WBPT Q1D polaron energy-momentum relation is plotted in the bend-over 
region for different confining potentials. It is seen that the anticrossing repulsion between 
the zero-phonon renormalized state and the renormalized phonon continuum increases with 
increasing frequency of the confining potential, i.e. with narrowing of the width of the Q1D 
channel. The dispersion curves Eo&,) and El(k,) of the two lowest subbands are plotted 
in figure 5. These curves are calculated with WBPT. From this figure it is seen that both 
dispersion curves are pinned at the boundary of the renormalized phonon continuum. Hence, 
the modification of the WBPT, developed in this paper, gives the correct bending-over and 
pinning behaviour for higher states also. Therefore we have overcome the problems with 
the form of the iWBPT developed in 1221 resulting in the incorrect bend-over and pinning 
behaviour for higher subbands. 

ala, 

Figure 6 shows the group velocity 
1 dEN 

U N  = -- 
TI dk, 

for Q1D polarons of the two lowest subbands. The polaron moving in the x direction under 
the influence of a weak electric field accelerates until the polaron wave vector reaches kiN)”, 
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Figure 3. Energy-momentum relation 
for QID polamns in the lowest subband of 
a CaAs-Gal-,ALAs QW with hn = 
2.5 meV. The results are plotted for 
IWBR (full curve), WEPT (broken curve) 
and RSPT (chain curve). The correspond- 
ing unperturbed energy-momentum rela- 
tion is plotted as a dotted curve. The un- 
renormalized phonon continuum is plot- 
ted as the crossed shaded area and the 
renormalized phonon continuum as the 
single shaded area. 

Figure 4. Energy-momentum rela- 
tion for QID ~olarons in the low- 
est subband of a GaAs-Gal-,AI,As 

sults m planed far As2 = 2.5 meV 
(full curve) and for AR = I2 meV 
(broken curve). The corresponding 
unperturbed energy-momentum rela- 
tion is ploued as a dotted curve. The 
single shaded m a  is the renormal- 
ized phonon continuum. 

QW calculated using IWBPT. The re- 

whereupon it slows down sharply. The reason for this behaviour is that the electron-phonon 
interaction induces a negative effective mass in the bend-over region. Increasing polaron 
momentum will slow down the velocity and stop the propagation until it can gain energy to 
either emit a real phonon or transfer to the upper branch inside the phonon continuum. Since 
the energy gap to emit a real phonon is smaller than the gap between the two resonance split 
branches, the probability for the LO phonon emission process is enhanced in comparison to 
the transfer to the upper branch. The polaron cannot emit a real phonon. because there is 
a finite energy difference between  EN(^,) and the boundary of the renormalized phonon 
continuum. In real systems, however, the energy levels are broadened due to scattering 
processes. ne energy broadening r = Ttfs, (5, = m,p/e: elastic scartering time; p: 
electron mobility) is typically between 1 x and 5 x lo-* meV in semiconductor 
nanostructures based on GaAs-Gal,AI,As heterostructures. Then it is possible that the 
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Figure 5. Energy-momentum relation 
for QID polarons in the two lowest 
subbands of a GaAs-Gal-,AI,As QWW 

with h$l = 2.5 meV (a) and hSl = 
12 meV (b) calculated using JWBW. 
The corresponding unperturbed energy- 
momentum relations &(k,) and &l(k,) 
are ploned as doned curves. The 
unrenomalized phonon continuum is 
plotted as the crossed shaded area and 
the renormalized phonon continuum as 
the single shaded area 

polaron emits a real phonon if the energy is large enough. After emitting a real phonon 
the polaron relaxes to the subband minimum, where the electric field again accelerates 
the polaron. This effect should be observable in transport experiments on QWWs. It is 
expected that the electron velocity shows spatial oscillations dependent on the strength of 
the applied elechic field. In a real QWW the electrons become scattered, not only by the 
optical phonons, but also by the residual impurities and by acoustic phonons via both the 
deformation potential and the piezoelectric mechanism. While the impurity scattering is 
elastic, the scattering by acoustic phonons is inelastic and hence leads to dephasing of the 
electron transport. The result is that the oscillations of the electron velocity should persist for 
several periods until spatial dephasing by the interaction with the acoustic phonons. Only for 
long QWWs at low temperatures and for low external electric fields is the transport dominated 
by electron-acoustic phonon scattering which causes a rapid dephasing and randomization 
before the electrons are allowed to drift up to the Lo phonon emission threshold. For higher 
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Figure 6. Polaron group velocity 
plotted againsl polaron wave vector for 
propagation in the two lowest subbands 
ofaGaAs-Gal_,AI,As~wwwithhn = 
2.5 meV (a) and h n  = 12 meV @) 
calculated using IWBFT. UL = 2 r p ~  = 
4.38 x IO7 cm s-' is the unperturbed 
electron group velocity at k? = I/rp. 

fields the carrier transport will be essentially ballistic up to the LO phonon~ threshold and, 
hence, electron velocity oscillations should occur in real QWWS. Similar findings have been 
reported recently [24] using ID Monte Carlo simulations of electron transport through QWWs. 

4. Conclusions 

We have presented the calculation of the dispersion relation for polarons quantum confined 
in QID QWWs. The developed theory modifies the IWBF'T and gives the correct bend- 
over and pinning behaviour of the dispersion curves for all subbands at the boundary of 
the renormalized phonon continuum. This boundary is at the one-phonon energy above 
the shifted ground state &(O) + AEo(0) + ~ W L  of the system due to electron-phonon 
interaction. Our theory is valid for zero temperature and momenta for which the effective- 
mass approximation is valid. It overcomes the problems of the theory of Degani 1221 
to give the correct dispersion curves for the higher subbands also. Further, the results 
obtained here are in agreement with that of Hellman and Harris [25, 261. In this work the 
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energy-momentum relation is investigated for 3D polarons travelling along the direction of 
an applied magnetic field, using a variational calculation. 'There are some similarities to the 
case of the QWW considered here, because the magnetic field quantizes the electron motion 
in the perpendicular plane. The variational principle, however, only allows the calculation 
of the ground-state energy, in contrast to the modified IWBFT developed in this paper. 

Throughout this paper we have only considered the interaction with 3D bulk Lo phonons, 
because the effect of the modification of the spectrum of the long-wavelength optical 
phonons due to the interfaces is expected to be small. The modified LO phonons are standing 
waves inside the QWW with energy fiw. Hence, this will not shift the phonon continuum. 
The interface phonons have a dispersion curve o(q,) lying below the Lo phonon frequency. 
Hence, the interaction of the elecKon with the interface phonons of QwWs will shift the 
phonon continuum to lower frequencies. Further possible improvements on these results 
would be the inclusion of the conduction-band non-parabolicity (the band structure effect), 
the non-parabolicity of the confining potential, the finite width of the Q w w  in- the growth 
direction and, if many electrons are present, occupation and screening effects. Special 
attention must be directed to higher electric subbands with bottoms above the threshold of 
the phonon continuum. 
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